python - sklearn: How to reset a Regressor or classifier object in sknn -
i have defined regressor follows:
nn1 = regressor( layers=[ layer("rectifier", units=150), layer("rectifier", units=100), layer("linear")], regularize="l2", # dropout_rate=0.25, learning_rate=0.01, valid_size=0.1, learning_rule="adagrad", verbose=false, weight_decay=0.00030, n_stable=10, f_stable=0.00010, n_iter=200)
i using regressor in k-fold cross-validation. in order cross-validation work , not learn previous folds, it's necessary regressor reset after each fold.
how can reset regressor object?
sklearn.base.clone should achieve you're looking achieve
Comments
Post a Comment